Hartree-Fock-Bogoliubov Theory

Hartree-Fock-Bogoliubov Theory

This document contains basics of Hartree-Fock-Bogoliubov Theory. We will follow [Goodman, 1980].

\[ H = \sum_{ij} T_{ij} c_{i}^{*} c_{j} + \frac{1}{4} \sum_{ijkl} V_{ijkl} c_{i}^{*} c_{j}^{*} c_{l} c_{k}\]

The finite-temperature properties of the system described by the above Hamiltonian can be computed using the density matrix

\[\begin{align} D &= \frac{e^{-\beta H}}{Z} \\ Z &= \mathrm{Tr} e^{-\beta H} \end{align}\]

In Hartree-Fock-Bogoliubov theory, we approximate the Hamiltonian $H$ by a non-interacting Hamiltonian of "quasiparticles"

\[H_{\text{HFB}} = E_0 + \sum_{n} E_{n} a_{n}^{*} a_{n}\]

The quasiparticle operator $a$ is related to $c$ in the following way:

\[c_{i} = \sum_{n} \left( U_{in} a_{n} + V_{in} a_{n}^{*} \right)\]

The HFB density matrix is given by

\[\begin{align} D_{\text{HFB}} &= \frac{1}{Z_{\text{HFB}}} e^{-\beta \sum_{n} E_{n} \hat{n}_{n} } \\ Z_{\text{HFB}} &= \mathrm{Tr} e^{-\beta \sum_{n} E_{n} \hat{n}_{n} } \end{align}\]

where

\[\hat{n}_{n} = a_{n}^{*} a_{n}\]

is the quasiparticle number operator.

The HFB partition function can be calculated:

\[Z_{\text{HFB}} = \prod_{n} \left( 1 + e^{-\beta E_{n}} \right)\]

and the density matrix is given in terms of the quasiparticle number operator

\[D_{\text{HFB}} = Z_{\text{HFB}}^{-1} \prod_{n} \left[ e^{-\beta E_{n}} \hat{n}_{n} + (1 - \hat{n}_{n}) \right] = \prod_{n} \left[ f_{n} \hat{n}_{n} + (1-f_{n}) (1 - \hat{n}_{n}) \right]\]

where

\[f_{n} = f(E_n) = \frac{1}{1 + e^{\beta E_{n}}}\]

is the Fermi-Dirac distribution function for the nth quasiparticle

Single-quasparticle density matrix $\overline{\rho}$ and pairing tensor $\overline{t}$

\[\begin{align} \overline{\rho}_{ij} &= \left\langle a_{j}^{*} a_{i} \right\rangle = \mathrm{Tr} \left( D a_{j}^{*} a_{i} \right) \\ \overline{t}_{ij} &= \left\langle a_{j} a_{i} \right\rangle = \mathrm{Tr} \left( D a_{j} a_{i} \right) \end{align}\]

Within HFB,

\[\begin{align} \overline{\rho}_{ij} = \delta_{ij} f_{i} \\ \overline{t}_{ij} = 0 \end{align}\]

The single-particle density matrix and pairing tensor are

\[\begin{align} \rho_{ij} &= \left\langle c_{j}^{*} c_{i} \right\rangle = \mathrm{Tr} \left( D c_{j}^{*} c_{i} \right) \\ t_{ij} &= \left\langle c_{j} c_{i} \right\rangle = \mathrm{Tr} \left( D c_{j} c_{i} \right) \end{align}\]
\[\begin{align} \rho &= U f U^{\dagger} + V (1-f) V^{\dagger} \\ t &= U f V^{\intercal} + V (1-f) U^{\intercal} \end{align}\]

where $f_{ij} = \delta_{ij} f_{i}$.

Expectation Values

Wick's theorem

\[\left\langle c_{i}^{*} c_{j}^{*} c_{l} c_{k} \right\rangle = \left\langle c_{i}^{*} c_{k} \right\rangle \left\langle c_{j}^{*} c_{l} \right\rangle - \left\langle c_{i}^{*} c_{l} \right\rangle \left\langle c_{j}^{*} c_{k} \right\rangle + \left\langle c_{i}^{*} c_{j}^{*} \right\rangle \left\langle c_{l} c_{k} \right\rangle\]
\[\begin{align} E &= \mathrm{tr} \left[ \left( T + \frac{1}{2} \Gamma \right) \rho + \frac{1}{2} \Delta t^{\dagger} \right] \\ S &= - k_B \sum_{i} \left[ f_{i} \ln f_{i} + (1-f_{i}) \ln (1-f_i)\right] \\ N &= \mathrm{tr} \rho \end{align}\]
\[\begin{align} \Gamma_{ij} &= \sum_{kl} V_{ikjl} \rho_{lk} \\ \Delta_{ij} &= \frac{1}{2} \sum_{kl} V_{ijkl} t_{kl} \\ \end{align}\]

The grand potential

\[\Omega = \sum_{ij} (T - \mu)_{ij} \rho_{ji} + \frac{1}{2} \sum_{ijkl} V_{ijkl} \rho_{lj} \rho_{ki} + \frac{1}{4} \sum_{ijkl} V_{ijkl} t_{ij}^{*} t_{kl} + k_B T \sum_{i} \left[ f_{i} \ln f_{i} + (1-f_{i}) \ln (1-f_i)\right]\]

References

Alan Goodman, "Finite-Temperature Hartree-Fock-Bogoliubov Theory," LBNL Paper LBL-11151 (1980). LINK